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Abstract 

A simple, efficient and general method is described for 
finding the linear orthogonal transformation to super- 
pose two similar structures given by sets of equivalent 
points, usually atomic position vectors. Formulae are 
also given for extracting the independent variables of 
rotation from the resulting transformation matrix. In 
addition, general transformations are derived, both in 
the case of proper rotation and in the case of rotatory 
inversion, to convert to a molecular frame of reference 
based on the superposition axis of symmetry. 

Introduction 

It often happens that two or more known structures 
are the same or similar but are arbitrarily placed with 
respect to one another. Important crystallographic 
examples include related molecular structures from 
different crystals, multiple copies of the same molecule 
in a single asymmetric unit, and similar substructures 
within a single molecule. Such situations are particu- 
larly common among biological macromolecules. For 
several reasons, it may be of interest to find the 
transformations that optimally superpose these 
structures. Most importantly, this facilitates a struc- 
tural comparison. When the related structures are 
contiguous, the transforming operation can be an 
intrinsic molecular property and it might be desirable 
to transform the complete structure to a flame of 
reference based on the local symmetry operator. 

Several different procedures have been described for 
finding the linear orthogonal transformation to super- 
pose two structures that can be described by sets of 
equivalent points, usually atomic position vectors (Cox, 
1967; McLachlan, 1972; Rao & Rossmann, 1973; 
Nyburg, 1974; Kabsch, 1976; Ferro & Hermans, 
1977). Perhaps still other methods have been used in 
the specific applications for which procedures have not 
been elaborated. Transformation to a molecular 
reference flame based on local symmetry operators has 
also been made in specific applications, but no general 
procedures for finding these transformations have been 
described. 

The purpose of this note is to describe a particularly 
simple and general method for superposing similar 
structures and to derive, from the parameters of this 
transformation, the transformation to convert to a local 
molecular frame of reference. The method for super- 
position developed here is most closely related to that 
of Rao & Rossmann (1973). Both that method and this 
one start by finding the general linear transformation 
that brings equivalent points in the two structures into 
least-squares superposition. These two methods differ 
in the means by which the transformation is then 
constrained to be an orthogonal transformation, i.e. one 
which moves the structure as a rigid body. In the 
method of Rao & Rossmann approximate Eulerian 
angles are estimated from certain elements of the 
general transformation matrix, these are then adjusted 
to a best fit to all of the matrix elements, and finally 
the Eulerian angles are refined by a procedure like that 
of Cox (1967). In the present method orthogonality 
constraints are imposed directly through the device of 
Lagrange multipliers. In this respect the method for 
superposition suggested here is like that given by 
Kabsch (1976) and belatedly noticed by this author. 
Kabsch's solution of the superposition problem is 
superior in that it requires no iteration. 

Least-squares superposition 

Suppose that two similar structures, denoted A and B, 
that have in common N equivalent points (usually 
atomic positions) are to be superposed. Suppose also 
that these structures have already been referred to 
rectangular Cartesian reference frames of uniform 
physical scale (e.g. fingstr6m units). Then the position 
vector, xs. k, of the kth point in structure B can be 
related to the position vector, xA.t,, of the equivalent 
point in structure A by a linear transformation: 

" = RXBA ÷ t, (1) XA,  k - -  X B , k  

where R is a 3 x 3 matrix with elements rij and t is a 
translation vector with elements (t I = t x, t 2 = ty, t 3 = tz). 
The optimal parameters for this general linear trans- 
formation will be those that minimize the weighted sum 
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of squares of discrepancies between equivalent points 
in the superposed structures, 

N 

~ :  E Wk(XA, k __ _,, X2 x s.ld • (2) 
k= 1 

unconstrained minimization of 4. Parameter shifts 
tending to minimize ~ and, thereby, to impose the 
constraints are then found by solving the resulting set 
of eighteen normal equations: ~9~/cO~rij = O, t g ~ / 8 ~ t  i = 
0 and t9~/~92 t = 0 for all allowed i , j  and l. The process 
is then iterated until convergence is reached. 

This poses a linear least-squares problem that can be 
solved directly and uniquely f r o m  the set of twelve 
normal equations generated by the minimization 
conditions t h a t  8~/Sri j  = 0 and tg~/tgt i = 0 for all i andj.  

The transformation matrix, FI, found in the mini- 
mization of ~ will not necessarily correspond to a rigid- 
body rotation. Indeed, Diamond (1976) has shown how 
such a matrix can be factored into the product, FI = AT 
of a pure rotation and a pure strain. The transformation 
T = (FIIq) 1/2 is a symmetric matrix (six independent 
elements) representing the strain, and the transfor- 
mation A = FIT -1 is an orthogonal matrix (three 
independent elements) representing the rotation that 
brings into coincidence the principal axes of strain in 
the two structures. Clearly, if the structures are to be 
moved as rigid bodies, Iq itself must be an orthogonal 
transformation matrix. The elements of such a matrix 
are the direction cosines of one rectangular Cartesian 
reference frame with respect to another. Consequently, 
the necessary and sufficient conditions that Iq should 
represent an orthogonal transformation (Dresden, 
1930) are that 

gl = r21 + r22 + r 2 3 -  1 - - 0 ,  

gz = r21 + r22 + r23-- 1 =  0, 

g3 = r21 + r22 + r23--  1 =  0, 

g4 = r21r31 + r22r32 + F23r33 = 0 ,  

g5 = ra l r l l  + ra2r12 4- ra3r13 = 0 ,  

g6 = rllr21 = r12r22 + r13r23 = 0. (3) 

The desired linear transformation can be constrained 
to meet the orthogonality conditions through the 
introduction of Lagrange multipliers, 2 l, and subse- 
quent minimization of the auxiliary function, 

6 

qb=(~  + ~. '~'lgi, (4) 
/=1 

with respect to all parameters including the Lagrange 
multipliers. Inasmuch as the constraining conditions are 
quadratic, this minimization is not a straightforward 
linear least-squares problem. Kabsch has given an 
elegant eigenvalue solution special to this problem. 
Alternatively, equations (3) can be linearized by a 
Taylor series expansion about approximate values for 
the matrix elements r o and equation (1) can also be 
expressed as a first-order Taylor expansion. The initial 
parameters for these expansions derive from the 

Rotation-angle representation 

Although all nine elements of an orthogonal trans- 
formation matrix are, in general, unique, the number of 
independent parameters is reduced to three by the 
constraints. In many instances it will be desirable to 
express this matrix in terms of the independent 
parameters. In fact, there are many s u c h  representa- 
tions. Superficially, these are of two classes depending 
upon the sign of the determinant of the transformation 
matrix. If I lql -- +1, F! corresponds to a proper 
rotation of coordinates; whereas if I lql = - 1 ,  R 
corresponds to an improper rotation or rotatory 
inversion. However, as is discussed below, a rotatory 
inversion matrix is the negative of a proper rotation 
matrix, R = - O ,  so that representations in terms of 
rotation angles suffice for both cases. 

Two especially useful representations of rotational 
transformations are those in terms of Eulerian angles 
or in terms of a single rotation about an axis specified 
by spherical polar coordinates. Rossmann & Blow 
(1962) have described now widely used conventions 
for both types of representations. They have tabulated 
the rotation matrix elements in terms of the Eulerian 
angles (01,02,03) and in terms of the spherical polar 
angles (~o,~',Z). By equating these elements with the 
values determined from the minimization of ~, 
equation (4), it is possible to extract rotation angles 
that are the independent variables of an arbitrary 
orthogonal transformation matrix. 

In the general case, Eulerian angles in the Rossmann 
& Blow convention can be evaluated according to 

01 = tan -1 [r31/-r32] , 

03 = tan -1 [rla/r23] , 

02 = tan-l  [ ( r J s i n  03)/r33] 

= tan-1 [(rEJcos 03)/r33]. (5) 

In the special case that r33 -- _+ 1, r13 = r31 = r23 ---- r 3 2  ---- 

0 and the Eulerian angles are indeterminate from 
equations (5). In this case 

81 + 0 3 = tan -1 ( t ' 1 2 / r l l ) ,  

O 2 --- cos -1 (r33); (6) 

01 and 03 are redundant so that all combinations giving 
the specified sum, 01 + 03, are equivalent. 
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The equations for the extraction of spherical polar 
angles, in the Rossman & Blow convention are, in the 
general case, 

~0-- tan -1 { ( r 2 1 -  r 1 2 ) / ( r 2 3  - -  r32)}, 

~, = tan-1 {[(r21 -- rlE)/sin ~o]/(ral -- r13 )} 

= tan-I  {[(r23 -- r32)/cos ~o]/(ra~ -- r~a)/, 

X =  tan - l  {[(ral -- r~3)/cos ~] / ( r~  + r22 + raa -- 1)/ 

= tan -1 {[(r2~ -- r J s i n  ~'sin ~o]/(r~ + r22 + r33 -- 1)} 

= tan -~ {[(r23- r32/sin ~,cos tp]/(rl~ + r22 + r 3 3 -  1)/. 
(7) 

The alternative expressions for ~ and X must be 
considered in order to guard against singularities when 
q~ or v/ are at cardinal values. These equations also 
break down in the special case that r~2 = r21, r23 = r32 

and r~3 = r3r Several situations arise depending upon 
whether neither, either or both of rl2 and r23 are equal 
to zero. If neither r~2 nor r23 is zero, then 

~0 -- tan -1 [ - - r 2 J r l 2 ]  , 

~, = tan -1 [(ral/sin tP)/--rl 2] 

= tan- l  [(r3Jcos tp)/rE3], 

x = ~ .  (8) 

If either but not both of r~2 and r23 is zero, then 

~ =  tan -1 [ ( r l 2 -  r2a)/(r22 + 1)], (9) 

and ~0 and Z are as specified by equations (8). If both 
r12 and r23 are zero when r~3 -- r3~, then r~3 is neces- 
sarily also zero. Since only the case of IF II --- +1 is 
considered here, this situation has four special 
possibilities: (~o,~,X) are (zc/2,zc/2,z0, (0,0,z0, (0,~z/2,z0 
or (0,0,0) according as (rll,r22,r33) are ( 1 , - 1 , - 1 ) ,  
( - 1 , i , - 1 ) ,  ( - 1 , - 1 , 1 )  or (1,1,1). A final special case 
occurs when r12 = r21, r23 = r32 a n d  r l3  :¢: r31 which 
happens only at r~2 = r23 = 0 and rl3 = --rat  Then 
(~0,~',X) are [O,O,tan-l(r31/r~l)]. 

In the case of rotatory inversion, i.e. IF ll --- --1, 
rotation-angle representations for {2 = --Iq can be 
found by substituting the elements of (2 into equations 
(5)-(9). 

Molecular reference frames 

When similar structures are contiguous, as in oligomeric 
molecules or in single molecules possessing repeated 
substructures, the transformations to superpose these 
structures are aspects of an intrinsic molecular 
symmetry. This symmetry may only be approximate 
and a rotation need not be rational, e.g. the symmetry 
operator may be an arbitrary screw axis. Whatever 
may be the intramolecular symmetry it can be 
advantageous to transform the entire structure to a 

new reference frame based on the molecular axis (or 
axes) of symmetry. In this way the inherent symmetry 
properties are expressed free of orientational factors 
and illustrations can readily be prepared to display the 
symmetry. 

The orthogonal transformation is sought which 
brings the points x of a given molecule in an arbitrary 
rectangular reference frame XYZ into the points x' in 
a new frame X ' Y ' Z '  based on the molecular 
symmetry relating substructure B of the molecule to 
substructure A. A convenient Cartesian system will 
have Z '  coincident with the symmetry axis, X '  
perpendicular to Z '  and in the direction of a given 
point xp, and Y' mutually perpendicular to X '  and Z '  
and directed so as to form a right-handed system. 
The required transformation is 

x' = S ( x  - u),  ( 1 0 )  

where U(Ux, Uy, U~) locates the new molecular origin in 
the old reference frame and S(sij) rotates the X Y Z  
system into correspondence with X ' Y ' Z ' .  Two 
different situations arise depending upon whether 
structures A and B are related by proper or improper 
rotation. In either case the transformation parameters, 
Iq and t, relating A and B and the coordinates of a 
single non-axial point xp (the centroid of structure B is a 
convenient choice), suffice to determine S and u. 

Proper rotation 

Matrix S is composed of the direction cosines of 
X ' Y '  and Z '  with respect to X Y Z .  The vector 
l~((x,~y,~ z) of direction cosines for Z ' ,  the symmetry 
axis, is known from the spherical polar angles, ~0 and 
~,, locating this axis. These angles are determined from 
FI by equations (7)-(9). Thus, 

s3~ = ~x = cos ~0 sin qt, 

$32 ~ ~y ~--- COS It/,/, 

s33 = (z = - s i n  ~0 sin ~t. (1 1) 

Any rotational transformation can be described as a 
screw operation. The rotation angle, 2~, about the screw 
axis specified by ~0 and ~ and the translation, t z, along 
this axis are the intrinsic parameters of this operation. 
The screw translation is given by the projection, 
t.l~, of t onto the symmetry axis, g. Thus, 

t z=  cos ~0sin ~t~, + cos q / t y -  sin ~0sin ~ t  z. (12) 

The origin of the molecular reference frame can be 
located at the intersection of the symmetry axis with 
the plane normal to this axis which passes through 
the point xp. The line which constitutes the symmetry 
axis can be defined by considering the effect of the 
superposing transformation on a point on the axis. 
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Such a point remains axial but is translated along the 
axis by t z. Thus the equations of the symmetry axis are 

X + t x g = R x + t  

(R --  I)x = t x ~ + t (13)  

[Notice that although these constitute three equations 
in three variables (x,y,z), the system is underdetermined 
since (R -- I) is of rank 2, I R -- II -- 0.] The family of 
planes perpendicular to the symmetry axis is given by 
~.x = p. The particular plane passing through the 
point Xp is specified by evaluating p for that point. 
Since u must also lie on this plane, its equation together 
with any two of the three equations given by (13) serve 
to define the origin point. For example, u can be found 
by solving this system of linear equations: 

[1I 1 
/ rll -- 1 r12 r13 \ Ux tz ~x-- tx 

!/ r21 r22-- 1 r23 ) uy = t x ~ - -  ty 

(14) 

The direction cosines, ~(~x,~y,~), of the X '  axis with 
respect to X Y Z  can now be evaluated from the 
equations for the directed line passing from the point u 
to the point xp. Thus, 

Sll = ~X = ( X p -  Ux)/d , 

s , 2  = = % - (15) 

= = - u ) / d ,  

where 

d =  2 + % -  u)  + uy l  

The direction cosines, q(r/~, r/v , r/~), of Y' with respect 
to X Y Z  are completely specified by the direction 
cosines ~ and ~ of the other two axes. This follows 
directly from the conditions (3) on orthogonal transfor- 
mations and the need to preserve a right-handed 
system. The magnitudes of these direction cosines are 
determined by 

Is2, I= r/x = (1 -- ~x 2 - -  ~x) 1/2, 

Iszzl = t/y = (1 -- ¢~-- ffz) '/z , (16) 

Is231---- r/z = (1 -- ~2 _ ~),/z, 

and the "signs of these elements are determined by the 
conditions 

+ CA), 

rixrlz = --(~x~z + ~x~z), (17) 

ISI = + 1 .  

If the signs of the products (r/x,r/r, r/~,r/~, r/rr/~ ) are 
(+,+,+), ( + , - , - ) ,  ( - , + , - )  or ( - , - , + )  [other sign 

combinations are impossible], then the signs of the 
direction cosines themselves (r/x,r/y,r/z) must be either 
(+,+,+) or ( - , - , - ) ,  (+,+,-)  or ( - , - ,+) ,  (+,- ,+) or 
(--,+,--), or ( - ,+ ,+ )  or (+, - - , - )  respectively. In each 
case, only one of the two possibilities will satisfy the 
condition that I S I = + 1. 

The transformation of superposition can now be 
described in the new coordinate frame in terms of the 
two fundamental parameters Z and t r This transfor- 
mation is given by (0~,0~,0~) = ~,0,0) or (q¢,q/,Z') = 
(zr/2,-z(2,Z) and (tx,,ty,,tz,) = (0,04). 

Rotatory  inversion 

The transformation of rotatory inversion (I R I = -- 1) 
is a point symmetry operation rather than a screw-axis 
operation as in a rotational transformation. Both a 
rotation axis and an inversion center on that axis are 
involved, but there is no intrinsic translational 
component. It is obvious to identify the point of 
inversion with the origin u of the molecular reference 
frame. The transformation of superposition by rotatory 
inversion can equally well be represented by equation 
(1) with R constrained to be orthogonal or by 

x" = O ( u  - x) + u, (18)  

wherein coordinates are first reflected through the 
inversion center u and then rotated by an orthogonal 
matrix Q (IQI = + 1). Since, by definition, (1) and (18) 
are identical transformations, 

Rx + t = - - lax  + (Q + I)u. (19)  

Upon equating components in (19) it follows that 

Q = - R ,  (20) 

as was noted above, and 

u =  ( I -  R) -1 t. (21)  

Equation (21) also follows directly from equation (1) 
on noticing that the center of inversion is unmoved 
by the transformation. 

These foregoing considerations together with the 
formulae already presented for the case of proper 
rotation suffice to describe the transformation 
[equation (10)] to a molecular reference frame in the 
event of rotatory inversion. The origin point is defined 
by equation (21). As before the g vector of direction 
cosines is given by equations (11) where the spherical 
polar angles are now extracted from Q rather than R. 
However, now only the direction of the X '  axis is 
specified by xp, the axis does not necessarily pass 
through this point. The direction cosines ~ of X '  are 
those of a line passing through xp from the point 
of intersection, Xa, between the rotation axis and the 
plane normal to the axis which also passes through 
xp. The point x a is given by 

xa = u + s~, (22)  
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where s can be determined by substituting (22) into the 
equation of the normal plane, x. ~ = p, passing through 
the point Xp. Thus, (u + sg). ~ = Xp. ~ and 

s = ( X p -  u~)~ x + ( y p -  ur)~y + ( z p -  u~)~ z. (23) 

The direction cosines, ~ for X ' ,  can now be computed 
from equations (15) by substituting the elements of 
x a for those of u. Given ~ and ~, 11 can be computed 
as before from equations (16) and (17) to complete the 
specification of S in this case. 

Implementation 

The procedures described above have been imple- 
mented as a computer program written in Fortran. 
This program has been tested by superposing the 
two mononucleotide-binding units of the NAD-binding 
domain in lactate dehydrogenase (Rao & Rossmann, 
1973). This superposition was made on st-carbon 
positions at unit weight and used the same coordinates 
and correspondences as described earlier (Hendrickson 
& Ward, 1977). The method used in this earlier fitting 
involved a crude search for approximate Eulerian 
angles followed by a non-linear least-squares refine- 
ment of the Eulerian angles and translation elements 
(Cox, 1967). Both that procedure and the final stage of 
the Rao & Rossmann procedure converged to four 
significant figures in the six transformation parameters 
after four cycles of refinement. The present method 
converged to exactly the same values after two cycles. 
The program has also been tested on a trimerization 
product of C,C-diphenyl-N'~-(4-chlorophenyl)-N~-cyan - 
azomethinimin (Flippen-Anderson, 1978). This mole- 
cule has three similar parts of 24 non-hydrogen 
atoms each. The results showed that one of the three 
pairs of substructures can be superposed by a 
proper rotation but that the other two pairs require 
rotatory inversions for superposition. Tests have also 
been run on a number of other problems. 

The procedures presented here are completely 
general. Special symmetry causes no difficulty. More- 
over, this method for superposition, unlike alternative 
methods, other than that of Kabsch (1976), handles 
rotatory inversion as readily as it does proper rotation. 
This superposition method is also very effective. Since 
only the constraining equations present non-linearities 
and these are only quadratic, convergence in the least- 
squares minimization is rapid and the process is quite 
free of false minima. As a result, the procedure is also 
robust to ill defined situations such as are presented by 
very dissimilar structures. The method is also compu- 
tationaUy efficient. There are only ten unique elements 
in the normal matrix for the linear least-squares step 
and only 48 of the 144 elements are non-zero. These 
same elements carry over directly to the non-linear 

step; only the simple factors for the Lagrange multi- 
pliers change. However, the right-hand-side vector of 
the normal equations must be computed anew each 
cycle. Nonetheless, the process is fast: even with an 
unoptimized program, superpositions are computed on 
a TI-ASC at the rate of 2 ms per atom per cycle 
following an initial set-up of 5 ms per atom. 

Additional conditions can readily be imposed on the 
transformations for superposition in special situations. 
For example, rotations can be constrained to be 
twofold (X = n) by fixing r12 - -  r21 = 0 ,  r13 - -  r31 = 0 

a n d  r23 - r32 = 0. Proper rotational transformations 
(screw operations) can be constrained to be pure 
rotations by setting t x -- 0. Thus a pure diad is fixed by 
imposing all four of these constraints with added 
Lagrange multipliers in equation (4). Similarly, 
improper rotations can be avoided by introducing 
IF ll -- 4-1 as an added constraint. 

Estimates of errors in the twelve elements of the 
linear transformation can be found from the inverse of 
the normal matrix upon minimization of equation (4). 
However, it is the errors in the independent variables 
that are of interest. Errors in rotation angles could 
be evaluated by an analysis of the propagation of 
errors in matrix elements through the angle extraction 
formulae (5)-(9). Alternatively, these errors could be 
determined directly from the inverse of a final normal 
matrix based on refinement against the actual 
variables of interest. 

As noted above, the Kabsch (1976) method for 
superposition is conceptually superior to that given here 
and to all others in that it requires no iteration. How- 
ever, in typical applications there would be little if any 
practical advantage as convergence is very rapid in this 
iterative procedure. Moreover, the present method has 
the advantage of being more amenable to the 
imposition of added constraints. For example, it would 
not be possible to constrain to a pure diad by the 
Kabsch method since such a constraint is not quadratic 
and is a function of translation as well as rotation. 
Of course, the equations given here for finding rotation- 
angle representations and for transforming to a 
molecular frame of reference apply equally well to the 
results of a Kabsch superposition. Notice, though, that 
the preliminary translations to centroids of the vector 
sets that are required in the Kabsch method must 
be taken into account in applying these transformations 
to a molecular reference frame. 

I thank Jane Richardson for discussions that 
prompted me to consider this problem and Judith 
Flippen-Anderson for the tests that induced me to 
perfect the handling of rotatory inversion. I thank the 
referees and Larry Andrews for bringing Wolfgang 
Kabsch's elegant solution of the superposition problem 
to my attention. 
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Abstract with 

A general method of calculating the intensity of X-ray 
diffraction from small crystalline particles whose 
boundary is defined by a shape function is discussed. 
The intensity formula which is generally given by a 
double sum over the reciprocal-lattice points is 
simplified into the form of a single sum, using 'the 
random-shift treatment '  which assumes that the 
position of the boundary relative to the crystal lattice 
varies at random from crystal to crystal. By the use of 
Fourier theorems, the intensity formulas are also 
converted into a single sum over the direct lattice. 
Although the electron distribution in the particle has 
been defined in various ways by the shape function, a 
more reasonable expression of the electron density 
appropriate to small crystals is introduced. The 
intensity formulas derived on the basis of the new 
form of the electron density are compared with other 
intensity formulas which have so far been proposed. 

1. Introduction 

The effect of the external shape and the size of a 
crystal on X-ray diffraction intensity was first dealt 
with by Laue (1936) for a parallelepiped crystal having 
N i unit cells along the a i axis (i = 1, 2, 3), for which 
the diffraction intensity is expressed as 

IL(b) = IF(b)l 2 G(b), (1) 
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F(b) = Y. f~(b) exp(2zribr~), (2) 

sin 2 zrN 1 ~ sin 2 zrN 2 r/ sin 2 7L/V 3 

G(b) - sin 2 zr~ sin 2 nr/ sin 2 zrff ' (3) 

where F(b)  is the structure factor, G(b) the Laue 
function, f~(b) the atomic scattering factor of the ttth 
atom located at r,~ = x,~al + y,~a 2 + z a a  3 and b the 
scattering vector expressed as b = (a~ + r/a~ + (a3, a t 
being the reciprocal vectors. 

In order to treat small crystals of arbitrary shapes, 
Patterson (1939) and Ewald (1940) introduced the 
shape function s(r) defined by 

s(r) = [~ inside the crystal boundary 
outside the crystal boundary 

(4) 
and expressed the electron density in a small crystal as 

Pe(r) = Poo(r)s(r), (5) 

where poD(r) is the electron density of a perfectly 
periodic infinite crystal. As a Fourier transform of Pc(r), 
the amplitude of X-rays diffracted by the crystal is 
given as 

A e(b ) = ( l /v)  ~, F ( h ) S ( b -  h) 
h 
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(6) 


